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Introduction

• Wave propagation along a perfectly cQnducting cylindrical wire

• parallel to a plane interface between two dissimilar materials has been

an area of theoretical and practical interest for several decades. During

this time the problem has been treated in varying degrees of approximation

by many investigators. Among the more relevant to this work are the treatments

- of Wait’ and Chang and Olsen2. Wait postulated a primary longitudinal Hertz

potential which generated a cylindrically symmetric TM field surrounding the

wire. He then expanded the field into a spectrum of plane waves and scattered

these plane waves from the interface to obtain the total electric field. Requir-

ing the longitudinal component of this total electric field to be zero on

the surface of the wire he obtained an equation for the modal propagation

constants. Chang and Olsen studied this modal equation in detail and showed

the existence of not only the usual transmission line mode but also a so-

called “earth—attached” or “fast-wave” mode. However, al l of this work was

done in the thin-wire approximation. That is, the only current accounted

for on the wire was the angular average longitudinal electric current .

If the wire is not thin and/or is less than a fraction of a wavelength

j away from the interface, one would expect that the longitudinal current would
- 

• have some azimuthal variation and that there would be some azimuthally

directed currents. Thus, one is led to inquire as to the conditions under

which these angularly dependent currents can be neglected in formulating

the modal equation.

In addressing ourselves to the question posed above, we formulate the

problem in general and then express the modal equation retaining only the

zero-order and first-order terms in the azimuthal variation. Then by

pt
~i

.
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2

comparing the first-order terms with the zero-order ones, we obtain a

criterion for determining the error incurred in retaining only the zero

order terms. Same work in this regard was carried out by Grinberg and

Bonshtedt3 but their results appear to be limited to cases where the

propagation constant is unmodified by the presence of the first order currents.

That is, they have assumed conditions such that the zero-order equations

de-couple from the higher order ones. The approach presented here takes full

account of the coupling.

Formulation

The geometry to be analyzed is shown in Figure 1. The wire is infinite
ik1ctz •

~~~~~~• in the z-direction and all field quantities are assumed to vary as e e 1W

where k1 = w/F~Tj . Similarly k2 = and may be complex to account

for loss in medium 2. A cylindrical coordinate system is shown with its axis

coincident with the axis of the wire. We postulate an infinite sum of two

dimensional electric and magnetic multipoles of unknown amplitudes located

on the axis of the wire. Expressing the field of each multipole as a spectrum

of plane waves and scattering each plane wave from the interface one could

obtain an expression for the total tangential electric field exterior to - •

the wire. Then, requiring the tangential field components to be zero on the

wire surface one would obtain an infinite set of simultaneous linear equations

for the amplitude of the multipoles . Being homogeneous, these equations

require for non-trivial solution that the determinant of the coefficients be

• zero. This requirement would yield the modal equation.

Before proceeding with this formulation, however, we first divide the

modes into three categories of which only one will be studied. The categories

are: those with no zero-order magnetic multipole field, those with no zero

i.. . ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. • ,ss_~~~•- ~~~~~~~~~~~~~~~~~
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order (angular ly independent) electric niultipole field, and hybrid modes

with both zero-order multipole fields. In this treatment we will concern

ourselves only with the modes of the first category because among them are

the modes studied in the thin-wire approximation by previous investigators.

Moreover , we will treat only modes which are symmetric about the x-z plane.

Thus, we postulate the presence of a zero—order electric multipole and first

order electric and magnetic multipoles and assume that all higher order

multipoles have negligible amplitude.

The postulated multipoles will be represented by their Hertz vector

potentials as follows. The zero-order electric multipole potential is

~e -4a ~(l)(~k1p) (1)
° k1 

Z 0

where

= (1 - cx2 ) 2 
, and Im(~) > o

Now, we note that one may generate from this potential the potential for the

first—order electric multipole by merely differentiating with respect to the

distance d from the multipole to the interface and dividing by ~k1.

That is, e

= 

7 
= 

2 
aH~~

) (~k1p)cos $ (2)

If there were to be a zero-order magnetic inultipole, its potential would be

l/~
r’
~~H

(l)
(~k )  (3)

Now , the symmetric first order magnetic multipole field corresponds to the

antisynunetric first order potential. This potential can be obtained from

N
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(3) by taking the negative of its derivative with respect to y and

dividing by k1C . Thus

= ~~~~~~~~~ ~ 
~~~~~~~~~~~~~~~~~~ 

+ (4)

Next, each of the potentials (1), (2), and (4) will be used as a primary

source a distance, d, from the interface and in each case the components of

the total exterior electric fields tangent to the wire surface will be

4erived.

Considering first the zero-order electric multipole field, we write

its potential as a plane wave spectrum in the form

e 1 1 ~ 1 -u1Ik 1x-D~ -iAk1y= —

~~~ 

- -
~~~ J ~~

— e e ciA (5)

1 1

2 2+where u1 = [A -
~~ ] and D = k1d. Now, following a procedure similar to

that outlined by Wait1 we introduce transmitted and reflected Hertzian

potentials of electric and magnetic types as follows.

Wøk * &~~ 

~~~~~~~ 
f  R(A) e

u x +
e

_
~

t
~~~dl for x > 0 (6)

1e : 1 f M(AJ e 
-u1(k1x+D) -iAk1y

~4 Z .~~~2 j  u11 -m
fo r x > 0  (7)

~oT ~~ 2 
~~ 

T(k) -u1D e~2
k
lx -iAk1y

1 -. f o r x< 0  (8)

WON a 2 
1N~1 -u1D e~2

klX 

~~~~~~~iirkl -. 1
for x < 0 (9)

I
b - 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where u2 = [A 2+cz 2
-n 2

] , n = 
k2/k and and are magnetic Hert z vectors

Now, computing the tangential components of electric and magnetic fields from

these potentials and requiring continuity at x=0 we obtain,

2
2 A_Uiu~l+R(A) = —

~~
- u1 (10)

C u2+nu 1

M( A) = 
-2ia(n 2 -l) J ’

~
7 [ AU

1 
2 1

~
‘o L(ul+u2) (u2+n u1) J (11)

Thus, the z component of the total electric field for x > 0 is,

Ee = C
2H~’~ (Ck1p) - C2H~~~ (ck 1p ’) + 2 J ~ 

A 2 u1u2 e 
U1 (k1X+D) ikl

Ay (12)

u2 n u 1

and the ~ component is,

iake 1 ~ i e  e I  . a e
= p 1~ ‘~o T

0~~ )  ~~~~ ~P

= — 
~~~~~~~ ~~

— H
~~~~~~~~~

t Ck ~k1p a4~ o

+ 
2ct a f~ 

A~u1u2 -~~k1x+D) 
_ ik1Ay~~

2 a~~ J 2 e e
i~~ k 1p u2+n u1

+ 
2ia(n2-l) a J 2 

-u1(k1x +D)-ik lXy 
(13)

ir~ k1 
-

~~ (u1+u 2)(u 2+n u1)

where p ’ = [(x+d) 2+y 2]~~
2 

, and D = k1d.

Turning next to the first order electric potential (2), recalling that

- ,

= 
1 ~~~ and noting the linearity of the reflection pIocess we see

1 çk1 ad

that ...e 
- 

1 aIr R .~e — 1 ~~~ e - 1 _____

~1R - 

~~~ 
and T1M 

- 

Ck ~d 
Thus, E 1 

- 

~~~~~~ 

or
1 1 1

______  - - - ~~~~ - - - - -  -‘~~~~ ‘w;• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Ezl = C H1 (çk1
p) cos~ + C H1 (Ck 1p’)cos$’

2 r~’ 
A—u1u2 -u~k1x+D) -iAk1y

- j U1 u2+n
2u1 

e e (14)

where p ’ and •‘ are cylindrical coordinates referred to x = -d , y = 0; i.e.,

x+d x+d
= P ’ 

= 

[(x+d)
2+y2]”2 

(15)

and
= = 

[(x+d)2+y2]’~
’2 (16)

Similarly, by first computing ~~ ~1R~ 
and and then substituting in,

iake 1 3  e e .
E~~~

1 

= p ~~ 
+ ‘~lR~ 

- lWii
0 ap ~1M (17)

we obtain ,

= - ~~—I4~~(ck1~)sin$ + 
~~~~~

-_ 
~~~~~

- [H1
0
~ (Ck1

p ’)cos$’]

2c& L .... ~~ 
r’~ 

A2-u1u2 -u1(k1x+D) -iAk1y
- 

~3 k1p a~ J ~u2÷n2u1

• 2ia (n2-1) 
~ J Au1 

2 e
_U

h 1 X+
~~ e~~~~ ’~ dA (18)

w~ k1 
-~~ (u1+u2)(u2+n u1)

In order to obtain fields due to a first-order magnetic multipole, we

begin with a zero-order magnetic multipole in anticipation of obtaining the

desired result by differentiation. Thus we proceed to express the zero-order

potential in terms of its plane wave spectrum as,

fl -a - —-
-~ 

—  —i- ~~~-~~- ~-~~~~~ -~~L ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



-.—~.-..--—,-.- -.-- - •~~ ._ fl••fl - — •fl~~~~~~f l•~~~•_ •_ - : .~~~~ --~~—a - -- ~~~~ .~_____ .• -

= a~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ (19)

As before we postulate the following scattered potentials.

WOR = 

k1
2iir 

~~~~~ 
-u1(k1x+D) -iAk1y

for x > 0 (20)

= 
1 i~.r M*(A) e~~’ 

(klx+D) _iAk
lydA

oM 2. h~ I uk iir~ oi 11 for x >  0 (21)

• .am 
- 

1 Fi’ I T*(A) -u1D u2k1x _iAk
lydx

~OT - 

k1
2ilIJ ~~ L~ 

u1 
e e e 

for x < 0 (22)

~oN = 

k 2iir ~~~~~~

•

~~

•‘ 

J~ 
N~(A) e

_U
~~ 

u2k1x-i Ak1y

1 • • for x <  0 (23)

where we emphasize that i1
~M 

and N are electric Hertz potentials. Imposing

continuity of tangential fields at the interface yields,

2 
X2(u1+n

2u2)-u1u2(u2+n
2u1)

+ *~~~ = —

~ 
(u1+u2)(u 2+fl u1)

M*(A) = 
2icc (n2-l) ~

j
i;;’ [ Au1 

2 1 (25)
C C 1 

L 1~~
2’
~~

2’
~
’
~ 
U
i)]

Thus, the z component of the total electric field for x > 0 is generated by

-

• 
T

OM 
. In particular ,

= 
2 c(n2 -1) 

~: u1+u2~~u2+n
2ui 

e h 1
~~~~e

”
~
1”dA (26)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and by differentiating with respect to y and dividing by k1 we obtain,

.,.-2ix(n
2
-~) A2 

2 

-u1(k1x+D) -iAk1y (27)
if C (u1+u2)(u2+n u1)

as the z- component of the total electric field for x > 0 due to a first order

magnetic multipole source. Likewise,

m iak1 3  a . a m mE,1 = 

~ 
•
~i 

‘T
~lM 

- 1u)l1~~ ~~~~ 
(ir~, + if lR~ 

(28)

That is,

Em 2cz2(n2-lJ a f A2 -u1(k1x+D) -iAk1y
= 2 e e dA

W~ k1
p ‘~ 

-~~ (u1+u 2)(u 2+n u1)

-jCH~
1
~ (Ck1P)Sin$ + ~~~~~~H~

1
~ (Ck1p ’) sin$ ’

- 
2 3 f [A

2(u1+n
2u2

)_u
1u2(u2+n

2u1~I -u1(k1x+D) -iAk1y• a~ J 
A l 2 I e e dA (29)

1 (u1+u2)(u2+n u1) J
-The fields of all higher order multipoles will be neglected.

The boundary conditions at the surface of the perfectly conducting

• wire p = a imply that,

A E e + A E C + M E m = 0ozo l zl l zl

A0E 0 + A1E 1 + M1E 1 = 0 (31)

on the wire. in these equations A0, A1, and M1 are unknown amplitudes of the

zero order electric, first order electric, and first order magnetic multipoles,

respectively. Each nialtipole field evaluated on the wire surface is now

written in Fourier components. For example,
~r .

- U-.

I-

p..

—-~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~ _____________
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E 0 = E 00 
+ E 01cos$ + E 02cos2$ + ... 

(32)

E 1 
= E 11sin$ + E 12sin2$ + ...

Equating the coefficients of $ independent, cos$, and sin$ terms yield a

homogeneous set of three simultaneous linear equations. Thus, we require

that the determinant of the coefficients be zero; that is,

Ee Ee Emzoo zlo zlo

Ee Eezol zll zll = 0 (33)

Ee BC Eni— $01 $11 $11

This represents the modal equation for a up to first order Fourier components.

It remains to find explicit expressions for the Fourier components of the

fields, i.e., the matrix elements. Had we neglected the first order terms

the equation would have read E
00 ’O which• is equivalent in the thin wire

approximation to the result of Wait1 and Chang and Olsen2

Representation of the Matrix Elements

• I Recall that all of the integrands involved here contain the factor
-u1(k1x+D) -iAk1y- e e . This factor can be conveniently represented in the

following form .
im($-$ +w/2)

-u1 (k1x+D) -iAk1y 
= ~~~~~ ~ ~~~~~~ 

° (34)

* 1 — l LU1where = -sin~~ — or $~~ 
= cos —

~-- . For our purposes, a convenient form

~~~ -: of this relation is

-1 -  -

~
• -u (k1x+D) -iAk1y -2u1D- •  

e 1 e = e {J
0(Ck1p)+2 I ~~~~~~~

- ~~~ x~~os m$0cos m$ + sin sin m$]} 
• (35)

•1

~~~~~~~~~~~~
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Upon substitution of this form in the integr-ands it is found expedient

to define two fundamental integrals.

• 

- 

11(a;v) = u~ (u~ +u~) 
dA (36)

-2u
1

D

• 12 (cc;D) = ~~~ f 
e 

- 

2 dA (37)
-L~, 

u1
(u2 +n u 1)

Now, all of the integrals resulting from substitution (35) may be expressed

in terms of these two fundamental integrals and their derivatives with

respect to 0.

The expressions with which we are concerned also contain

which we desire to write in terms of p and $ . This is accomplished by

the addition theorem,

H~~~(Ck 1p
’)e~~~ = H )(2CD)Jm+n (Ck lp)e

m+
~

)$ (38)

which implies that,

= H~’’(2CD)J0(Ck 1p) + 2 
m~1 

HW (2CD)J (~k1p)cos m~ (39)

H~
’
~ (Ck 1p

’) cos $‘ = ~H
W (2~D)J0(Ck 1p) -2 m~l 

H~
1
~ (2CD)J (Ck 1p)cos a$

(40)

H~~~(Ck 1p
’)sin $‘ -

~~~~~ a 
( 2 C J c 1~)siT~ m~ (41)

Substitution of (35), (39), (40), and (41) ,  and p a , into (12), (13) ,

(14) ,  (18) ,  (27), and (29) yields the following expressions for the matrix

elements.

fl - fl. __
~ -• _~_ 

__________________ ______ ~~~~~~~ • - 
~~~~~~~~~~~~~~~~~~~
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Eeoo — C
2H~~~(~k1a) - [C2H~’~ (2CD) + I~]J(~k1~ ) (42)

= - [2c2I41~2cD) + j~
- I’~1J1(ck1a~ ~43)

= 
~~ 

(H~
1
~ (2CD) + 

2iC3 
I’~]J1(~k1a) + 4 [I’~+4C2I4JJ (ck1a)

(44)

= -(C 2H~
1
~ (2~D) + 

~~~~~
- I~]J (Ck1

a) (45)

E 11 = c
2
L4~~ cck 1

a) - 2C
2[H~~ (2CD) + 

~ 
I’~
’ ]J~(~k1a) (46)

= - 

~? 
H~
’
~(Ck1

a) + 
(1) 

+ 4 I
’
~
’]J1(Ck 1a)

+ 
~~~~~~ 

[I’~’ + 4C2I)J~ (Ck 1a) (47)

E~10 = ~~~~ [I~ + 4C2141 J0 :k1a (48)

Em11 
= - 

2~
2 1~~’ + 4C2I~]J1 (Ck 1a) (49)

= _iCI4~ (Ck a) + ~.H~
1
~ (2CD)J (Ck1a) - 

2C4k~~~~
4 4C

2I~ ]J1(Ck 1a)

+ [n
:_
3
ct2(I:;I+ 4C2I ’)- 

~
••

~•j• (I’~’+ 4C2 I~)] J (Ck 1a) (50)

where 13 = I~ - a212, 14 = I~ - 12, and primes on the I symbols denote

• differentiation with respect to D. It is now easy to see that as k1a

approaches zero, E
00
, E 11, E ii,  and predominate and equation (33) ,

the modal equation, becomes

It e e mE

~
00 

B 11 E~11 0 (51)

. -
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which is certainly satisfied when E
00 

= 0; as required by Wait’ and by

Chang and Olsen2 . It remains to obtain approximate expressions for the

fundamental integrals, I~ and 
~2’ 

in order to arrive at a criterion for

validity of the thin wire approximation. We further note that all the I
i
’s

and their derivativ~~vanish when the earth becomes perfectly conducting.

It is then not difficult to show that the only acceptable solution is C
2 

= 0

or cc = ±1. The result then reduces to the well-known result of a two-wire

transmission line.

Proximity effect for a small height

We now proceed to discuss the proximity effect as the thin-wire

approaches the earth surface. In particular, we are interested in the

case when the height of the wire is much less than both the free-space

wavelength and the skin-depth of earth so that the fundamental integrals

(36) and (37), and their higher derivatives can be evaluated in a manner

similar to that used by Chang and Wait5, Provided that 1C1D<< I and

m I D  << 1, the following approximate expressionsfor I~(a;D) and 1 (cl;D)

hold:

• I~ (cc;D) -H ’’~ (2CD) — 4~~~j0~ (52)

I~ (cx;D) - 

~~~~~ 
H~~~ (2CD) + i~~ o (53)

where Ij~ and are independent of D and given by

I~ 0 (a) £n ~~~~ + . (54)
n -i. n

1 0 (cz) - ( 2 ) {~~ .~~~-. + • [~cL 
_iA~(l+n ~ 

+ Ln .~~
.- 

~~
}

l+n n A (l.n ) 1-i A (1+n ) n

(55)
and A - (a _cc~) and - n(n +1) .

— ,~—~~~~ •--~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Successive differentiation with respect t~ 0 then gives the higher

deriyat iyes of and 4i); j a 2 ,3. On the other hand, the integration

On D on both sides of (52) and (53) yields the result of

I1(cc;D) 110(cc) - D{H~~~ (2CD) — 
~~~~~~ [l+1 0(a)]) (56)

12 (a;D) = 120(cc) - D {( 2
2)[H W (2C0) - - ~~ I~o

} ~57)

where 
~~~ 

(a) and 120 (a) are the values of I~ and 12 evaluated at

D = 0. Thus , if now we substitute (52) - (57) into (42) - (50) , while

retaining only the leading terms in the Small-argument expansion in D
• and A , the following approximate expressions for all the relevant field

components are obtained :
2 2

BC
00 

!a (C 22~n + 2~~~ (Ln CD+y 
~~~~) 

- I~~]; (58)

- where y = 0.577216 ..‘ is the Euler ’s constant, A — k1a and

2~~130 = I10 - a 1 20

Beol - 
~~~~~ ~~~~~~~~ 

(c a-i 
~~~~~

-

~~~~~
- )  (59)

I. 

E~~, 

~~~~

- 

~~

a
:2~~~~

i
~~

2 ::~~
1j  

(60)

E~ io it (~
ç1
) C 2~D) ‘ ~

2 2
- 2~ ~4~) + (~~j ( c 2_ i _

;~~ )], (62)

- + (
~

.) [C
2_ i( 2 )] } (63)

r
p..

~~~~~~~ fl -I. r~ -
~

-.z ~~~~~~~~~~~~~ 
-
~~~~~~~~~~~~~~ i ~~~~~~~~~ • - 

fi 
- -. - f,.- -.— . - • .—~~—-— fi ____________________



Ea10 
= - 

~~~~~~

- 

~~~~~ 
‘ 

(64)

E
~l1 ~~ (~~

:
~) (~~~

2
(~~ , (65)

E 11 iTA2C
3 {c2 

+ (~~3
2
[c
2_i 

~~~

With these approximate expressions, the original model equation as given

by the determinant in (33) now takes up a much simplified form of

Be00 + ~~.6~a) 0 , (67)

or 2 2
2 2D (C~~C )

-C Ln -r + 2 (~..nCD ~1 - i ¶12) - I~~ + 6(a) = 0 , (68)
n+ l

where
6(a) = a2(~~)

2 

~ EcA
~

2 
+ 

C
2 i2C~;cn

2+l) 
(69)

-

~ 
- and the expression for ~~ 

= I
~,0 

- a2I~0 is given by (54) and (55).

Except for the term 6(a), (67) and (68) now correspond exactly to the

• approximate modal equation derived by Chang and Wait
5 using the so-called

“thin-wire” approximation in which the longitudinal current is assumed
p

to be angularly uniform and the azimuthal current neglected. Denoting

a as the solution of EC
00 (cz ) = 0, one then concludes that the con-

dition I6(a0)I << la0~ E 00(%)I must be imposed. We note that a

suitable solution of E
~00(cc0) - 0 is known in Chang and Wait to be

= (l-a~) 
— Ln ~v I (tn 2D/A] 

-l

—~.—- —-.
~~-~~~~~ —. ~~~~~~~~~~~~~~~~ -,,fl’..——-— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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provided that the condition 1n 2 1>> C~ >> ln
2
[~ 

holds. Thus, 6(a0) is

generally of the order of (A/2D) 2
~.n(2D/A) . We further note that the

magnitude of first order electric and magnetic multipoles are related to

the zero-order electric multipole by (30)-(32) . Using the simplified

expressions in (58) - (66) and also neglecting terms of order (A/2D) 2 ,

it is not difficult to show that

2 2
A
1 “A

2 \ 12  C~~Cn ~
A0 

(
~2CD ) ~C -i 

n2+l ~ 
(70)

and

M 2(~ ) 
(
~~2_i n ) • (71)

To determine the non-uniformity of the surface current, one merely needs

to compute the dominant contribution to the current density at the wire

surface. Now since the uniform current density J
5~0 is proportional

to A0H~,(~~) and the cosinusoidal current ~szl 
is proportional to

A1H~(l~A )~ we obtain

th (~) (72)

which means the perturbation of the current is usually larger than that of the

propagation constant.

• Equation (69) and the condition 16(cc0)I << IaoaaE oo(ao)I give the explicit
• . 

dependence of thin-wire approximation on the radius-to-height ratio.

In that derivation however, we have not taken into the account the fact

that each term in the small (CD) expansion individually can be very

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :.~~~~
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large because of the different functional behavior in a . In particular,

it has been shown that, as a result of the residue contribution from a

pair of poles in the integral given in (37),both 13 and 14 possess an

inverse square-root singularity with the branch points located at

F a~ = ± n / (n2+l)~ in the complex cc-plane. These branch cuts are associated

with that part of the continuous spectrum which radiates along the earth

surface. Thus, in the neighborhood of cc we have from (37) and the

definition of 13 and 14

2i . — 2n2 2 2 4 -i2D(n2-l)4 (73)
3~~~a ~~ ~~~ ~~~ 

c c )  e
n -l

with the higher-order derivatives 1km) and 1~m) for m> 0 given as

(m) _ [ -2i~~
$ (n —l) ‘

Provided that (A/ 2D) is small , we can again find the approximat e field

expression from (42)-(50) . A similar analysis then leads to the con-

clusion that I6(a)l is negligible whenever 1A 2/n31 << l(a2-a~)~I .

Thus except for a small region near a = 1, specified by J (c12-l)I  << (A/2D)2

according to (69), and an even smaller region near a =a~1 the thin-wire

approximation Is mndeèd well justified.

Corresponding results for a large height

In the case when the height is greater than several skin-depths of

earth (i.e., Inf~ D 2 >> 1), the fundamental integrals (36) and (37) can be

approximated asymptotically in a manner similar to that used by Chang and

Olsen. (In fact their W(a) is in their approximation Just equal to our
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iirn2l2.) Beginning with I~ we write

• ~~u +in —2u D
1 - 2 uin (n —1) -

~~~ 1

= 

i~ (n
2-l) 

- in)f 
e~~~~ - 

~~w=2D

= 

n
2

l 
[cHf~~(2cD) + inH~

1
~ (2CD) J (75)

where u2 has been approximated by -in because most of the contribution

to the integral occurs where

A2 2
u2 = [A2 + a’—n2] —in[l ~~ J (76)

and As indicated by Chang and Olsen , a better approximation

is u2 (n2+l)~

An approximation for 12 can be obtained directly from Chang and

Olsen as mentioned above. However, we present here the derivation of a

more approximate but simpler expression. First, we cast 12 in the form,

* -•-i•- 

f 
H~~~(x)e~~ ~~~~~~ dx (77)

““ 2CD

An approximation for large 2CD may now be obtained using the large

- . 

- - argument asymptotic expression for H~
1
~(x). That is,
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12 X —~--J~ f
_1_ e

1
~~~~~ e~

2
~~

’n 
dx

2CD

______ r 1~ 1 ~ -2i D/n
= 

~~~ /1 + ~ erfc L(? )/DC C1 + —~- )  

J 
e (78)

Now, using the large argument asymptotic form for the complementary error

function we obtain :

1 2itD

~~2 

v;:-’ 

~~~~~~~~~ ) 
(79)

To the same order in 1/CD we have

L ‘1 (80)

To this order of approximation —
~~ 2iC so that the derivatives of j

the I’s in the matrix elements may all be replaced by factors of 2iC

Use of (79) and (80) will result in a lowest order approximation for

large CD. If CD is not very large one must obtain more accurate ex-

pressions for I~ and 12 as was done by Chang and Olsen. Por purposes

of this treatment, however, it will be assumed that CD is sufficiently

large that our asymptotic forms are appropriate.

p
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The approximations obtained above will now be substituted in (42)-(50)

and the amplitudes *1 and will be found in terms of A0 and

parameters . For notational convenience we define,

2iCD
• 6 =

e 
___ (81)
/iiTCD

Thus ,

i i 
_~~
{!! j .) 

G (82)

1

2 
~~i( 

l/(nç)2 
) G (83)

1 +l/(nC)

and

-i - 
(cc/n ~ 2 

q3G (84)
~ Lii -1 l+l/(nC)

_ _ _  - 
(l/n~~

2 
= q4G (85)

n -l l+l/ (nC)

Retaining only constant and linear terms in the series for the Bessel

functions Jn (Ck 1P) and evaluating at p-a; i.e., k1
p = A, we have

• for large CD and small CA ,

EC
00 C

2H~
1
~~(CA ) - (~

2+2i~q3)G (86)

i~A(~
2-2~q3)G (87)

- -

~ E 01 a(C - 2q3)G (88)

-iC(C + 2iq3)G 
(89)

E 11 C
2
14~~(CA) - ~

2
(C-2q3

)AG (90)

r

Li ~~ ____________________________________________________________________________________ • -.~~~ - - ~~~~ -‘•- ,



r .T~ ~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

21

E 11 - ~~~~~
. H~

1
~ (CA) + ict (C - 2q3)G (91)

rm —

ziG

0 (93)

E~11 -iCH~~~(CA) (94)

Using these approximations to the matrix elements in (33), one then

obtains E~00 + 6 (a) = 0, where

6 (a) = -(~ .) (CA) (C+i2q3)(C-2q 3) e
24C 1) (95)

The condition 16(cc ) l is small requires a small radius-to-height ratio

F 
in addition to a small CAl . Letting 

~ 
be such that E 00(C0) = 0,

and defining ~C to be C1 
- C0 where C1 is the value of C which

satisfies (33) in this approximation we find in agreement with the

general theory of smal l perturbations that

irA2 (cc /n 
(96)

C0 2C0D 2.n(—1) (1 + 1/n C0)
2

and,

(cc /nC ) 2

1A 11 C0 /j5~ (1+1/n C) 
1A01 ; 1M11 0 (97)

so that the ratio of the first-order current component to the uniform

- current is given by

~s~i ~ A 
(a0/n C0)

2

szO (çp) 1 +l / (nç,)

p- fl

—
~~~~~~

.—~~~~~- ~~~~r-; _ 
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Now , since C0D is the large parameter , one might say the currents are

perturbed but the propagation constant is not. The conclusion we

derived for a large height is therefore consistent with the case of a

small height.

Conclusion

The work presented was primari ly concerned with obtaining a measure

of the significance of the first-order components of the currents on the

wire compared with the zero-order on the uniform current. Using a

multipole expansion method, we derived a formal expression for the modal

equation in the form of a determinant, i.e. (33). Validity of the so-called

“thin-wire” approximation was discussed for two cases; one corresponds

to the case of a vanishing height, m I D  << 1 and the other for height
- 

- 

greater than several wavelengths of waves in free-space. In both cases

the amplitude of the first order current becomes more significant as the
• height decreases before the propagation constant is significantly modified.
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